دانشگاه علم و فناوری مازندران
سامانه مدیریت سوابق
زهره نقی زاده
شماره تلفن محل کار (1) : 1134540230
فکس :
شماره تلفن محل کار (2) :
کدپستی : 4851878195
صندوق پستی :
نحوه همکاری : عضو هیئت علمی
وب سایت : https://www.researchgate.net/profile/Zohreh_Naghizadeh
پست الکترونیک : Z.naghizadeh@mazust.ac.ir
آدرس محل کار (1) : مازنرران- بهشهر- بلوار دانشگاه- کیلومتر 3 جاده دریا- دانشگاه علم و فناوری مازندران- دانشکده ریاضی
آدرس محل کار (2) :
تحصیلات

کارشناسی ریاضی کاربردی از دانشگاه فردوسی مشهد سال 1381
 کارشناسی ارشد ریاضی محض از دانشگاه مازندران سال  1385
دکتری ریاضی محض از دانشگاه مازندران  سال 1390

 

سابقه تدریس

کارشناسی

ریاضی عمومی ۱و۲و۳-  مبانی آنالیز ریاضی-  آنالیز ریاضی-  آنالیز ریاضی ۱و۲و۳-  مبانی سیستم های دینامیکی-  توپولوژی عمومی-  نظریه اندازه و کاربردها

کارشناسی ارشد

نظریه معادلات دیفرانسیل با مشتقات جزیی- آنالیز حقیقی- آنالیز تابعی- آنالیز تابعی کاربردی 

 

 

 

 

بیوگرافی

متولد هفتم تیر ماه ۱۳۵۹ از شهرستان بابل

وضعیت استخدام

استخدام پیمانی- استادیار
 

سوابق اجرایی

مدیر گروه رشته ریاضیات و کاربردها و رشته علوم کامپیوتر از سال ۱۳۹۲ لغایت  ۱۳۹۴  

جوایز / نشان های علمی

کسب امتیاز دانشجوی ممتاز دکتری در سال 1389

طرح های تحقیقاتی

طرح تحقیقاتی با عنوان وجود و چندگانگی جواب های ضعیف معادلات و دستگاه های بیضوی -  دانشگاه علم و فناوری مازندران سال ۱۳۹۴

طرح تحقیقاتی با عنوان وجود  برای رده ای ازمسایل مقدار مرزی بیضوی به وسیله روش های تغییراتی- دانشگاه علم و فناوری مازندران سال ۱۳۹۵  

مقالات

[1] G.A. AFROUZI, N.T. CHUNG, Z. NAGHIZADEH, Existence and Nonexistence of Nontrivial Weak Solution for a Class of General Capillarity Systems, Acta Mathematicae Applicatae Sinica, English Series Vol. 30, No. 4 (2014) 1121ï؟½1130 DOI: 10.1007/s10255-014-0444-2 (ISI).

 

[2] G. A. Afrouzi, Nguyen Thanh Chung, and Z. Naghizadeh, On Some Quasilinear Elliptic Systems with Singular and Sign-Changing Potentials, Mediterr. J. Math. 11 (2014), 891ï؟½903 DOI 10.1007/s00009-013-0363-0(ISI).

[3] G. A. Afrouzi, N. T. Chung and Z. Naghizadeh, EXISTENCE OF A NONTRIVIAL SOLUTION FOR A CLASS OF NONLINEAR ELLIPTIC SYSTEMS IN RN, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 20 (2013) 685-694.

[4] G.A. Afrouzi, Z. Naghizadeh and N.T. Chung, On a class of nonuniformly nonlinear systems with Dirichlet boundary conditions, Ukrainian Mathematical Journal 66/9 (2015), 1289–1301(ISI).

[5] G. A. Afrouzi, Nguyen Thanh Chung, and Z. Naghizadeh, On Some Quasilinear Elliptic Systems with Singular and Sign-Changing Potentials, Mediterr. J. Math. 11 (2014), 891ï؟½903 DOI 10.1007/s00009-013-0363-0(ISI).

[6]  G.A. AFROUZI, QIHU ZHANG AND Z. NAGHIZADEH, BANACH FIXED POINT THEOREM IN APPLICATION TO NONLINEAR ELLIPTIC SYSTEMS, Journal of Nonlinear Analysis and Optimization Vol. 4, No. 2,(2013)

[7] G.A. Afrouzi and Z. Naghizadeh, Nonexistence and multiplicity of nontrivial solutions for some nonuniformly nonlinear systems, Ricerche di Matematica: Volume 62, Issue 1 (2013), Page 19-32.

[8] G.A. Afrouzi and Z. Naghizadeh, Nonexistence and multiplicity of nontrivial solutions for some nonuniformly nonlinear systems, Ricerche di Matematica: Volume 62, Issue 1 (2013), Page 19-32.

[9] G.A.Afrouzi and Z. Naghizadeh, An existence theorem for a class of nonlinear Dirichlet systems, Bulletin of mathematical analysis and applications, 4/1 (2012) 208-213.

[10] G. A. Afrouzi and Z. Naghizadeh, An existence theorem for a class of nonuniformly nonlinear systems, AJBAS 5/7 (2011) 1313-1317 (ISI).

[11] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, Existence of multiple solutions for a class of (P,q) Laplacian systems, NA TMA 72 (2010) 2243-2250(ISI).

[12]G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, Existence and uniqueness of solution for P-Laplacian Dirichlet problem, IJNS 8/3 (2009) 274-278.

[13] . G.A.Afrouzi, Z.Naghizadeh and S.Mahdavi, Monotone methods in nonlinear elliptic boundary value problem, IJNS 7/3 (2009) 283-289.

[14] G.A.Afrouzi, Z.Naghizadeh and S.Mahdavi, Numerical approach to obtain positive solution for classes of Laplacian systems, IJNS 7/4 (2009) 462-466.

[15] G.A.Afrouzi, Z.Naghizadeh and S.Mahdavi, Existence of weak solutions for a class of nonuniformly elliptic equations of P-Laplacian type in R^N, FJAM 39/2 (2010) 151-159.

[16] -G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, Algorithms for positive solutions of a nonlinear elliptic equations, WJMS 5/1 (2009) 53-56.

[17] G. A. Afrouzi, Z. Naghizadeh and S. Mahdavi, Computational method to obtain positive solution for classes of Laplacian systems with sign changing weight functions, AMC 195(2008) 460-465 (ISI).

[18] -G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, The Nehari manifold for p-Laplacian equation with Dirichlet boundary condition, NA: MC 12/2 (2007) 143-155 (ISI).

[19] G. A. Afrouzi, Z. Naghizadeh and S. Mahdavi, Two Numerical methods for finding multiple solutions of a logistic equation, AMC 193(2007) 203-210 (ISI).

[20] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A Numerical method for finding positive solution of diffusive logistic equation with constant yield harvesting, AMC 191/1 (2007) 234-238 (ISI).

[21] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A Numerical method for finding positive solution of diffusive logistic equation, AMC 190 (2007) 1730-1734 (ISI).

[22] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A Numerical Algorithm for finding solution of multiparameter semipositone Dirichlet problems, AMC 190 (2007) 287-291 (ISI).

[23] G. A. Afrouzi, Z. Naghizadeh and S. Mahdavi, Numerical methods for finding multiple solutions of a Dirichlet problem with nonlinear terms, IJNS 2/3 (2006) 147-152.

[24] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, On optimal scaling Algorithm for finding positive solution of Elliptic Equation, AMC 189/2 (2007) 1255-1259 (ISI).

[25] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, Two numerical Algorithms for finding solutions of multiparameter semipositone Dirichlet problems, AMC 189 (2007) 201-207 (ISI).

[26] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A numerical method for finding positive solution of elliptic equation with Neumann boundary condition, AMC 189 (2007) 23-26 (ISI).

[27] G. A. Afrouzi, Z. Naghizadeh and S. Mahdavi , On scaling algorithm for finding positive solution of elliptic equation, AMC 189 (2007) 298-301 (ISI).

[28] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, Two numerical methods for finding multiple solutions of a superlinear Dirichlet problem, AMC 188/1 (2007) 981-988 (ISI).

[29] -G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A Numerical method to obtain positive solution for classes of competitive systems, WJMS 3/3 (2007) 163-168.

[30] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, Computational algorithm to obtain multiple positive solutions for sublinear semipositone problems, JIC 2/3 (2007) 203-208.

[31] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A computational algorithm to obtain positive solutions for classes of competitive systems, JIC 2/1 (2007) 34-40.

[32] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, Numerical methods for finding multiple solutions of a logistic equation, AMC 188 (2007) 314-321 (ISI).

[33] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A numerical method for finding positive solution of elliptic systems with nonlinear diffusion in population dynamics, AMC 187 (2007) 957-961 (ISI).

[34] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A numerical Algorithm method for finding positive solutions for classes of p-Laplacian equations, AMC 187 (2007) 1126-1130 (ISI).

[35] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A numerical method for finding positive solution of logistic equation, AMC 186(2) (2007) 1497-1501(ISI).

[36] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A numerical method to obtain positive solution for classes of sublinear semipositone systems, AMC 186 (2007) 1113-1119 (ISI).

[37] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, Numerical methods for finding multiple solutions of a semilinear elliptic equation, AMC 186 (2007) 801-805 (ISI).

[38] -G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, Numerical methods for finding multiple solutions of a superlinear problem , JIC 2/1 (2007) 27-33 .

[39] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A numerical algorithm for finding solutions of p-Laplacian Dirichlet problems, AMC 185(2007) 213-217 (ISI).

[40] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A numerical method to obtain positive solution for classes of sublinear semipositone problems, AMC 184 (2007) 445-450 (ISI).

[41] -G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A computation algorithm for finding positive solutions for a class of superlinear Dirichlet BVP, AMC 183 (2006) 1381-1385 (ISI).

[42] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A computation algorithm for sublinear elliptic partial differential equations, AMC 183 (2006) 610-616 (ISI).

[43] G. A. Afrouzi, S. Mahdavi and Z. Naghizadeh, A Numerical method for finding positive solution of Dirichlet problem with a weight function, JIC 1/3 (2006) 168-172.

[44] G. A. Afrouzi, S. Mahdavi, and Z. Naghizadeh, A Reduction Algorithm for sublinear reaction-Diffusion Dirichlet problems, WJMS 3/1 (2007) 45-50.

[45] G. A. Afrouzi, S.Mahdavi, and Z. Naghizadeh, The Nehari manifold for superlinear equation with Dirichlet boundary condition, WJMS 2/4 (2006) 236-240.

[46] G. A. Afrouzi, Z. Naghizadeh and S. Mahdavi, On positive solutions of a superlinear Dirichlet problem with a weight function, GJPAM 2/2 (2006) 95-102.

[47] G. A. Afrouzi and S. Mahdavi and Z. Naghizadeh, On the study of existence and nonexistence of positive solutions for a superlinear Dirichlet problem, IMF 1/30 (2006) 1483-1489.

 

 

کارگاه های شرکت کرده

  کارگاه اموزش لینوکس

 کارگاه معادلات دیفرانسیل با مشتقات جزیی و مسایل مقدار ویژه - ای پی ام اصفهان

سامانه مدیریت سوابق ویهان
محصول مشترک گروه شرکت های نرم افزاری ویهان و دانشگاه علم و فناوری مازندران
نسخه 1.0